If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+X^2-2=0
a = 1; b = 1; c = -2;
Δ = b2-4ac
Δ = 12-4·1·(-2)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3}{2*1}=\frac{-4}{2} =-2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3}{2*1}=\frac{2}{2} =1 $
| ½(c-16)=4 | | (1/2)(c-16)=4 | | X(x+12)48=180 | | 24=4(w-4)-8w | | 3y8=-2 | | 8u-6u+4u-u-2u=18 | | 8x-6=3x+16 | | 12.5-6g=-2g-3.5 | | −7x−1=−7x−1= −9x−17−9x−17 | | 2j-2j+3j=9 | | 3x-5x=-8-32 | | 10=3-7u | | 5x-8=16-7x | | 12g+4g-10g-5g+2g=15 | | .5x+8=1x | | -1/4y-6=-11 | | -¼y-6=-11 | | 2j-j-j+j=2 | | 1=5w+6 | | m/(-5)=-25 | | m÷(-5)=-25 | | 15z=8*3 | | 15g=6(4+3g) | | 11d-4d-5d=10 | | 4x−6=4x+3 | | 2(x+3.5)=17 | | 36x^2-47=0 | | 7-4v=3 | | 6u-4u=14 | | 9k-8k=13 | | (9x+2)=61 | | 14x+8=21x+2 |